(2)-(2/a)=1/(a^2)

Simple and best practice solution for (2)-(2/a)=1/(a^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2)-(2/a)=1/(a^2) equation:


D( a )

a^2 = 0

a = 0

a^2 = 0

a^2 = 0

1*a^2 = 0 // : 1

a^2 = 0

a = 0

a = 0

a = 0

a in (-oo:0) U (0:+oo)

2-(2/a) = 1/(a^2) // - 1/(a^2)

2-(2/a)-(1/(a^2)) = 0

2-2*a^-1-a^-2 = 0

t_1 = a^-1

2-1*t_1^2-2*t_1^1 = 0

2-t_1^2-2*t_1 = 0

DELTA = (-2)^2-(-1*2*4)

DELTA = 12

DELTA > 0

t_1 = (12^(1/2)+2)/(-1*2) or t_1 = (2-12^(1/2))/(-1*2)

t_1 = (2*3^(1/2)+2)/(-2) or t_1 = (2-2*3^(1/2))/(-2)

t_1 = (2*3^(1/2)+2)/(-2)

a^-1-((2*3^(1/2)+2)/(-2)) = 0

1*a^-1 = (2*3^(1/2)+2)/(-2) // : 1

a^-1 = (2*3^(1/2)+2)/(-2)

-1 < 0

1/(a^1) = (2*3^(1/2)+2)/(-2) // * a^1

1 = ((2*3^(1/2)+2)/(-2))*a^1 // : (2*3^(1/2)+2)/(-2)

-2*(2*3^(1/2)+2)^-1 = a^1

a = -2*(2*3^(1/2)+2)^-1

t_1 = (2-2*3^(1/2))/(-2)

a^-1-((2-2*3^(1/2))/(-2)) = 0

1*a^-1 = (2-2*3^(1/2))/(-2) // : 1

a^-1 = (2-2*3^(1/2))/(-2)

-1 < 0

1/(a^1) = (2-2*3^(1/2))/(-2) // * a^1

1 = ((2-2*3^(1/2))/(-2))*a^1 // : (2-2*3^(1/2))/(-2)

-2*(2-2*3^(1/2))^-1 = a^1

a = -2*(2-2*3^(1/2))^-1

a in { -2*(2*3^(1/2)+2)^-1, -2*(2-2*3^(1/2))^-1 }

See similar equations:

| 100x-.72=300x+.62 | | 9.1=7x+8.4 | | 7.4x+9-8.4x=7 | | 3x^8+27x^7+24x^6=0 | | x-33=39 | | 0.6x+0.3=-0.9 | | 2(x-8.3)=2.8 | | 7x+6.88=3x+12 | | -4.8x+1.1=-22.9 | | 1/8T=1232 | | 9.5x=-61.75 | | x-5=9.22 | | (2u+9)(4-u)=0 | | x^2+1=12 | | -7y=1.19 | | x+3.5=8.9 | | 4x-0.3(x+1.2)=-1.4+2.7x | | 5/-6b=-5/6 | | x^2=202 | | .2x=1.6 | | 1/2x-6x^2-6x-14 | | 2b-a+c=2 | | (49x^8)^1/2 | | -40=(3m-19)(m+1) | | 5/9x-1/3=-3 | | 4.7x+4.1=-2.3x+.53 | | 3x+17=360 | | (85/10)y=9/x | | 5x-10+2x-x^2= | | 51+9x=-66 | | (2x-2)*(2x-2)=56 | | 2/3x-1/3=-1 |

Equations solver categories